对本文的总体评价为:分
可参考以下标准:
A Portfolio Selection Model for Robo-Advisor
2018
IEEE
In order to build a portfolio selection model for a robo-advisor, which can be used on ETFs of mainland China and get the efficient frontier, a number of models based on the mean-variance model are studied and analyzed experimentally, the results show that the hybrid model using Hopfield neural network and genetic algorithm can output efficient frontier better than others. Based on this, exponentially weighted moving average/covariance are applied to adjust the model's inputs, that is, the mean and covariance of assets's return rate. Experiments were conducted using the collected transaction data of ETFs, the results show that after the adjustment the model can know future performance of portfolios better based on long-term historical transaction data.
Chen, Liping, Kun Liu, Yanwei Wang, and Haoming Zhang. “A Portfolio Selection Model for Robo-Advisor.” In 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 693-698. IEEE, 2018.
1. 论文是关于什么的?[请提供该论文的简要摘要。]
2. 这篇论文的长处和短处是什么?[请以以下角度评述:(a)创新(研究问题、建模、方法等);(b)相关性(研究问题、发现等);(c)严谨性(适当的方法、分析的正确性等)]
研究问题、建模、方法等
研究问题、发现
适当的方法、分析的正确性等
3.如果有的话,潜在改进的主要地方是什么?[如果这些关键要求和建议能够被适当处理,请重点关注能使文章发表的关键要求和建议。如果你看到不可逾越的障碍,请清楚地描述你的担忧。如果能为编辑和作者提供具体有建设性的意见最好不过了,并在可能的情况下,提出可行的建议。同样,应避免含糊不清和/或含糊不清的批评。]
4.如果有的话,潜在改进的微小地方是什么?[再次,请具体说明。]
5.有没有机会做一项新的研究?